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Ponderomotive barrier as a Maxwell demon
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The possibility of efficient ponderomotive current drive in a magnetized plasma was reported

recently in [Phys. Rev. Lett. 91, 205004 (2003)]. Precise limitations on the efficiency are now given

through a comprehensive analytical and numerical study of single-particle dynamics under the action

of a cyclotron-resonant rf drive in various field configurations. Expressions for the particle energy

gain and acceleration along the dc magnetic field are obtained. The fundamental correlation between

the two effects is described. A second fundamental quantity, namely, the ratio of the potential

barrier to the energy gain, can be changed by altering the field configuration. The asymmetric

ponderomotive current drive effect can be optimized by minimizing the transverse heating.

PACS numbers: 52.35.Mw, 52.40.Db, 52.55.Wq
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I. INTRODUCTION

An intense electromagnetic field can exert a significant time-averaged force on a charged particle known as the

ponderomotive, or Miller, force [1], which plays an important role in various nonlinear phenomena of waves-plasma

interaction (e.g., self-focusing, filamentation, Raman scattering). In the presence of a magnetic field, ponderomotive

effects are explained in terms of a pseudo-potential, which governs the particle guiding center motion along the

magnetic field. The pseudo-potential can be put in the form [1–3]

Ψ = Φ + µB0, Φ =
∑

ν

e2|Erf,ν |2
4mω(ω + νΩ)

. (1)

Here Erf,ν is the rf field component with polarization τ ν ,

τ±1 = (x0 ± iy0)/
√

2, τ 0 = z0; (2)

x0 and y0 are the unit vectors in the plane perpendicular to the magnetic field B0 ≈ z0B0(z), smooth on the scale of

the oscillations amplitude; ω is the frequency of the rf field, and Ω = eB0/mc is the Larmor frequency. The quantity

µ = mv2
L/2B0 represents an approximate integral of the particle motion [2, 3], analogous to the adiabatic invariant

of free gyromotion in a slowly varying magnetic field. (Here vL = v⊥ − vrf,⊥ is the velocity additional to the velocity

of the rf-driven oscillations vrf .)

The ponderomotive force plays an important role in the dynamics of natural (cosmic) plasmas (see, e.g., Refs. [4–6]),

yet its properties often come in useful in the laboratory as well. The practical applications include isotopes separation

in plasmas composed of multiple ion species [7], as well as stabilization of low-frequency modes [8, 9] and rf plugging

in magnetic confinement devices (for review, see Ref. [2]). For all of these effects, it is sufficient that drift particle

dynamics follows the “adiabatic” model describable in terms of a reversible potential (1). However, for a reversible

potential, it is required that rf and dc field profiles vary slowly compared to the particle oscillations and the beat

frequency ω − Ω changes little in a period. In a certain vicinity of the cyclotron resonance, where Ω(z) ≈ ω, this

condition is violated and the approximation of a ponderomotive potential (1) fails. In this case, nonadiabatic effects

come into play.

As proposed in Refs. [10, 11], the ponderomotive force can be used drive electric current in a magnetized plasma

through an rf barrier asymmetry: As the potential (1) experiences a singularity at the cyclotron resonance, a resonant

rf field can operate essentially like a Maxwell demon (MD), reflecting particles incident on one side while transmitting

those incident on the other side of the ponderomotive barrier, and hence producing a current (see Sec. II for details).

Unlike a true Maxwell demon, particles experience collisionless heating while passing through the resonance, and the

amount of energy they receive stochastically appears to be linked tightly with particle acceleration along the magnetic

field. The asymmetric ponderomotive current drive (APCD) effect has many uses, and could be competitive with

other means of rf current generation [11].

The purpose of this paper is to study the conditions under which APCD can be sustained. To explore the basics of

the effect, we consider the simplest analytic model, which demonstrates the fundamental properties of the asymmetric

barrier opration. In particular, we limit ourselves to the problem of nonrelativistic single-particle dynamics in given rf
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and static fields and neglect the electrostatic field, which appears in a real plasma due to charge separation caused by

a ponderomotive force. In this case, for studying the current drive effect, the action of the rf field on plasma particles

can be conveniently described in terms of the mapping between the particle velocities before and after the interaction

with the rf field: v2 = T(v1). In the paper, we show how the function T can be obtained and how these results can

be used to optimize the field configurations for applications like current drive.

The nonadiabatic dynamics of rf-driven particles in the cyclotron-resonance area has been studied in a number

of works [2, 5, 12–19], primarily inspired by interest in rf plasma confinement, yet the general analytical treatment,

sufficient for studying the APCD effect, has not been fully put forth. For instance, weak heating was studied for

particles quasi-adiabatically trapped by an rf field within a plasma [13–15] with little attention to those transmitting

through rf plugs and leaving the operating volume of the fusion device. The most general analytic model of transmitting

particle dynamics was proposed in Ref. [12], where the major emphasis was made on particle acceleration from the

resonance region. In other cases, effects caused by the inhomogeneity of the dc magnetic field were either studied

heuristically [5], on the level of elementary estimates [2], or neglected completely [16, 17]. What remains necessary is

a full and general treatment of the problem. In this paper, we present a comprehensive study of nonadiabatic particle

dynamics for a broad variety of field configurations. In doing so, we address as well a specific application of current

drive in a magnetized plasma.

The three main results are presented in the paper. First, we developed a nonlinear analytical model of transverse

heating and longitudinal acceleration of rf-driven nonrelativistic particles near the cyclotron resonance and established

integral equalities showing the fundamental correlation between the two effects. Second, we estimated the minimum

rf power deposition into a plasma, which would be sufficient to sustain the asymmetry of an barrier for APCD. Third,

we proposed an alternative scheme of the ponderomotive current drive of substantially higher efficiency than that

recently proposed in Ref. [11], yet it remains to identify how the effect might be implemented in a plasma device in

a practical manner.

The paper is organized as follows. The idea of an rf barrier operating in a quasi-MD regime is discussed and

fundamental limitations on sustaining the asymmetry of the barrier are considered in Sec. II. Basic equations are

introduced in Sec. III. In Sec. IV, we discuss the simplest approximations for the rf heating and the height of the

ponderomotive barrier in case of smooth field profiles. In Sec. V, the transverse heating is discussed for a fairly

general field configuration. In Sec. VI, we introduce the approach for calculating the average longitudinal force, which

is used further in Sec. VII and VIII for particular cases of interest. In Sec. IX, we discuss how particle acceleration

is connected to resonant heating and derive restrictions on the energy transfer for a realizable asymmetric rf barrier.

In Sec. X, we discuss the possibility of applying a cyclotron-resonant rf barrier with reduced transverse heating for

efficient current drive in plasmas, or, for that matter, for other applications as well. In Sec. XI, we present the results

of our numerical calculations, and, in Sec. XII, we summarize the main results of the work. Some supplementary

calculations are given in the Appendices.
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II. ASYMMETRIC BARRIER

Let us consider a standing wave such that the rf energy density W ≡ |Erf |2 is a function of z. If the frequency of

this wave is close to the cyclotron frequency, the ponderomotive force Fpm will be quite large. Since W = 0 outside

the interaction region, the gradient of W(z) changes sign along the particle trajectory, and the momentum transfer

in the region dW/dz > 0 will be cancelled by the interaction in the region dW/dz < 0. Thus, it is impossible to put

the ponderomotive force at work in a homogeneous magnetic field B0.

However, one can design a magnetic-mirror field configuration (that is, where B0 is nonuniform along z), such

that, for the most important rf harmonic with the resonant circular polarization, the sign of the factor (ω − Ω)−1 in

Fpm = −dΦ/dz compensates the sign of the energy density gradient dW/dz. In the region where dW/dz > 0 the rf

field frequency ω is below the cyclotron frequency Ω, and in the region where dW/dz < 0 the rf field frequency is

above Ω. For example, suppose that the rf electric field envelope has a maximum at the cyclotron resonance, and

thus Brf experiences phase reversal over the resonance (Fig. 1). The average Lorenz force due to rf-induced transverse

particle oscillations can be put in the form 〈∆Fz〉 = F1 + F2, where

F1 =
1
c
〈vrf × B0〉z , F2 =

1
c
〈vrf × Brf〉z. (3)

To get the sign of F1 and F2 note that the phases of the particle oscillatory transverse displacement rrf(z, t) and

the oscillatory velocity vrf(z, t) change over the resonance by π (see Sec. III). Hence, so does the phase of the small

transverse component of the dc field, B0,r ≈ − 1
2 rrf B′

0,z, seen by the particle at rrf(z, t). Thus, at each z both F1

and F2 are directed the same way, namely, towards weaker dc magnetic field. [Note also that the diamagnetic force

F0, due to a nonzero magnetic moment µ of particle Larmor rotation, F0 = −µB′
0(z), is similarly directed. Hence,

if transversely heated by the rf field (which corresponds to an increase of µ), a particle can also gain longitudinal

acceleration by converting its perpendicular energy via a magnetic nozzle, as proposed in Ref. [20].]

This prescription permits net thrust from a standing wave [10, 11] applied near the cyclotron resonance: while

particles traveling from weaker magnetic field (Ω < ω) are decelerated and, in principle, can be reflected by the

barrier, those traveling from stronger field (Ω > ω) are automatically transmitted and accelerated by the rf field.

Without resonant heating, the barrier would operate precisely like a Maxwell demon (MD), which would decrease

the plasma entropy without energy deposition into the plasma and whose existence is thus prohibited by the second

law of thermodynamics. Hence, the heating in principle cannot be reduced lower than a certain limit, which then

determines the upper bound for a realizable current drive efficiency.

The same idea can be alternatively explained as follows. A physically realizable rf gate, which could reflect particles

moving in one direction while transmitting those traveling the other way, is constrained by the Hamiltonian nature

of the wave-particle interaction. Since collisionless particle motion under the action of an electromagnetic field is a

Hamiltonian process, the particle phase flow remains incompressible throughout the interaction. Imagine now that

we partition the particle phase space into small cells of equal volume ∆Γi = ∆Γ, and to each cell attach a certain

value of the one-particle distribution function fi. Then the number of cells that have a given value of f is conserved

throughout the interaction process (and so does the plasma entropy S = −∆Γ
∑

i fi ln fi [21]), as follows from the
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Liouville theorem. Alternatively, this fact can be expressed as conservation of the so-called Casimir invariants, or

Casimirs, which essentially determine the distribution of the values fi (see, e.g., Ref. [22]) and whose existence is an

intrinsic property of any Hamiltonian system.

Suppose that plasma particles having an initial phase space distribution f1 are introduced into an electromagnetic

field for a limited time, which eventually results in bringing the plasma into some final state f2. Since limited by

the Casimirs conservation, the distribution f2 may not be arbitrary but will rather represent a result of “restacking”

of the preserved original phase-space elements ∆Γi, regardless of the spatial and temporal structure of the field the

plasma has undergone interaction with. To drive a current as efficiently as possible, one would need to minimize the

energy deposition into a plasma for a given current produced by the gate. However, the fact that f2 is a restacked f1

imposes a limitation on the energy and momentum exchange between the rf field and plasma particles [23, 24].

Calculating the absolute limit determined by the Casimirs conservation for a gate of an arbitrary structure represents

a separate problem, which we consider elsewhere (see Ref. [25]). Approaching the absolute minimum in practice is

challenging (if not impossible). However, a matter of practical interest is how efficiently the power deposition can

be minimized in a technically realizable gate. Here, we estimate the minimum heating, at which a realizable rf

barrier remains capable of driving a current, and propose a near-optimum current drive scheme. First we discuss the

single-particle dynamics in the vicinity of a cyclotron resonance, to which the next few sections are devoted.

III. BASIC EQUATIONS

To explore the basics of the APCD effect, let us consider the simplest model, which demonstrates the fundamental

properties of the asymmetric barrier operation. Let us assume that the motion of a particle (an ion or an electron) can

be adequately described by nonrelativistic equations. Let us assume also that the rf radiation represents a transverse

plane wave of an arbitrary longitudinal structure, while the influence of the electrostatic field, which can appear in

a real plasma due to charge separation caused by the ponderomotive force, is of minor importance. In this case, the

particle motion is governed by the equation

m
dv
dt

= e
(
Erf +

v
c
× (Brf + B0)

)
. (4)

Assume a linearly polarized localized rf field (for alternative polarizations, see Appendix A) determined by the vector

potential (in units mc2/e)

Arf = x0 ε(z) cos τ, ε(±∞) = 0, (5)

and thus given by

Erf = x0ε(z) sin τ, Brf = y0ε′(z) cos τ (6)

in units mωc/e. Here ω is the frequency of the field, τ = ωt is the dimensionless time, and z is the longitudinal

coordinate. The normalized rf field amplitude ε is assumed small compared to unity, as it represents the ratio of the
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momentum imparted by the wave field in a single oscillation to mc. Consider also a dc magnetic field determined by

the vector potential, which we approximate by a linear function with respect to the transverse displacement:

A0(r) =
1
2

b(z)
(
z0 × r

)
(7)

(in units mc2/e). Then, in units mωc/e, the actual field B0 = ∇× A0 can be written as

B0 = −xb′

2
x0 − yb′

2
y0 + b z0, (8)

where the particle coordinates are measured in units c/ω. The dimensionless function b(z) is approximately equal

to the magnetic field strength measured in units mωc/e, or the local ratio of the nonrelativistic Larmor frequency

Ω = eB0/mc normalized on ω. Thus, b(z) = 1 at the cyclotron resonance located at z = 0.

In dimensionless notation, when the particle velocity is normalized on the speed of light c, the scalar motion

equations can be put in the following form:

v̇x = vyb + yvz
b′

2
+ ε sin τ − vzε

′ cos τ, (9a)

v̇y = −vxb − xvz
b′

2
, (9b)

v̇z = vxε′ cos τ + (xvy − yvx)
b′

2
. (9c)

The two types of oscillations are intrinsic to the particle motion in rf and dc magnetic fields. Those are free Larmor

rotation with frequency b(z) and rf-driven oscillations with unit frequency (in dimensionless notation). If the relative

change in the beat frequency between the two is small over a period of that frequency and the spatial scale of the rf

field LE is large enough, i.e.,

vz

(1 − b)2
d(1 − b)

dz
� 1, LE � vz

|1 − b| , (10)

then the two types of oscillations uncouple [3, 13], and one can solve for the transverse particle motion to get

r⊥ = rd + rrf , v⊥ = vd + vrf . (11)

Here rd and vd are the drift displacement and velocity undergoing free Larmor oscillations, while rrf and vrf stand

for rf-driven (to the leading order, purely transverse) velocity and displacement given by

xrf = −ε sin τ

1 − b2
, yrf = −εb cos τ

1 − b2
, (12a)

vrf,x = −ε cos τ

1 − b2
, vrf,y =

εb sin τ

1 − b2
. (12b)

Under the approximation of smooth rf and dc fields (10), two integrals of particle motion are approximately

conserved [1–3]: the magnetic moment of the drift motion

µ =
v2
d

2b
(13)

and the so-called quasi-energy of the longitudinal motion

E =
v2

z

2
+ µb + Φ, (14)
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where the ponderomotive potential Φ is given by

Φ(z) =
ε2(z)

4(1 − b2(z))
. (15)

In the vicinity of the cyclotron resonance (b(z) ≈ 1), the average potential Φ(z) yields a singularity, which is a clear

sign of the ponderomotive approximation failure. To describe particle motion in this regime, more detailed analysis

is needed.

IV. QUASI-LINEAR APPROXIMATION FOR SMOOTH FIELDS

First, consider the simplest case when the spatial scale of the dc magnetic field is large compared to the particle

longitudinal gyroradius:

Λ = LB/vz � 1, (16)

assuming LE/vz � 1 as well. Suppose the rf field amplitude is approximately constant across the resonance region,

ε(z) ≈ ε0, while the magnetic field strength can be approximated with a linear function

b(z) = 1 + z/LB (17)

(Fig. 2). Then the dominant heating effect can be calculated as follows. Consider the general expression for the

average energy change

〈∆E〉 =
〈 ∞∫
−∞

vx ε(z(τ)) sin τ dτ
〉

(18)

with expression for the particle velocity vx given by Eq. (12), which, in dimensional complex notation, is given by

vx =
iω

ω2 − Ω2

eEx

m
e−iωt. (19)

Noting that the linear (in ε) response function vx(ω) cannot experience a singularity in the upper half of the ω

complex plane, when integrating across the cyclotron resonance, one must shift the singularity from the real axis

correspondingly [21, 26] to get

〈∆E〉 =
1
2
=

∞∫
−∞

ε(z(τ))2

b(z(τ))2 − 1 − i0
dτ. (20)

With dz = vz dτ and assuming vz = const in the resonance region, one obtains

〈∆E〉 =
π

4
ε2
0 Λ. (21)

The assumption of constant vz and linear response vx(ω) to calculate the nonadiabatic heating effect constitute the

so-called quasi-linear approximation, which is valid only for fast particles. Indeed, as vz goes to zero, the expression

(21) experiences a singularity being a sign of the quasi-linear approximation failure. Hence, for low velocities, detailed
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analysis is needed to calculate 〈∆E〉 more accurately, namely, by considering the finite width of the region where a

particle undergoes resonant interaction with the rf field. The width of this region [13]

z̄ =
√

LBvz , (22)

can be readily obtained from Eq. (10), which yields the condition |z| � z̄ for the reversible quasi-potential (15) to

be established. The time scale τ̄ , over which the particle passes the resonance region, is then of the order of
√

Λ.

Therefore, a fast particle does not have sufficient time for being heated, and thus, energy gain must decrease as its

longitudinal velocity is increased – exactly as predicted by Eq. (21). However, this scaling holds only for magnetic fields

(17) smooth inside the interaction region, unlike abrupt fields, for which the conclusion must be revised (Sec. VIII).

The effective height of the barrier, which determines the maximum longitudinal energy a particle must have to be

reflected adiabatically, can be estimated as Φmax ∼ Φ(z̄), or

Φmax ∼ ε2
√

Λ, (23)

and thus depends on the particle initial longitudinal velocity [15]. The characteristic of the barrier independent of

the particle initial velocity is the “critical” energy Ê = ε
8/5
0 L

2/5
B , or the critical velocity v̂ =

√
Ê ,

v̂ = ε
4/5
0 L

1/5
B . (24)

Particles with vz � v̂ are reflected adiabatically from the barrier if moving from the weak-field side (Ω < ω).

Those which travel in the same direction with vz & v̂ (and all of those traveling backwards and hence experiencing

ponderomotive acceleration rather than deceleration) penetrate the resonance region and undergo cyclotron heating.

(In this case, the quantity v̂ equals the characteristic momentum a particle gains inside the resonance region [12].)

For particles having vz � v̂ and traveling each way, the longitudinal velocity change is small compared to vz. For

more accurate description of transverse heating and longitudinal acceleration, a general model of particle nonadiabatic

dynamics is developed in the next sections.

It must be understood that the presented results remain applicable only for classical particle motion. Even small

relativistic modification of the Larmor frequency can change the scalings, which describe the resonant interaction of a

particle with an rf field (see, e.g., Ref. [12]). The characteristic time, at which the particle ceases to interact resonantly

with the field because of relativistic shift of the gyrofrequency can be estimated as τrel ∼ ε−2/3. If τrel . τ̄ , relativistic

effects become dominant, and the spatial scale LB no longer determines the amount of energy a particle can gain from

the rf field. However, if τrel � τ̄ , relativistic corrections remain of minor importance, and the assumption of classical

particle dynamics (used in this paper) becomes sufficient for adequate description of the APCD effect. For velocities

vz ∼ v̂, the latter condition, which we will assume satisfied, can be expressed in terms of the rf field amplitude ε0 and

the characteristic scale of the dc field inhomogeneity LB:

ε
4/15
0 L

2/5
B � 1. (25)
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V. TRANSVERSE HEATING

To solve for the transverse particle motion, let us first introduce a complex transverse displacement

ρ = x + iy = reiφ, (26)

in terms of which the transverse motion equation takes the following form:

ρ̈ + ibρ̇ +
i

2
ρḃ = − d

dτ
(ε cos τ). (27)

For given functions b(τ) and ε(τ), this equation turns to a linear ODE, so that one can write

ρ(τ) = ρf(τ) + ρrf(τ), (28a)

ρf(τ0) = ρ0, (28b)

ρrf(τ0) = 0, (28c)

where ρf stands for the solution of a homogeneous equation (i.e., describes free Larmor oscillations with initial

displacement ρ0), while ρrf stands for the rf-driven oscillations and vanish if ε ≡ 0.

In the region of the most efficient interaction with the rf field, ρrf and ρf oscillate at approximately equal (unit)

frequencies, and the particle orbit is approximately circular. The latter is also true away from the rf field, where the

gyroradius is inverse proportional to b. Then, in the leading-order approximation, one can accept the general formula

ρ = iw/b, (29)

where we introduced a complex velocity w = ρ̇,

w = vx + ivy. (30)

Hence, one can rewrite Eq. (27) as a first-order ODE for w:

ẇ + ibw − ḃ

2b
w = − d

dτ
(ε cos τ). (31)

Supposing the motion starts at τ = τ0 at the location z = z0, one can get an exact solution of this equation:

w = wf + wrf , (32)

wf = w0

√
b(z(τ))
b(z0)

exp


−i

τ∫
τ0

b(z(τ ′)) dτ ′


 , (33)

where w0 = vx,0 + ivy,0 is the initial value of the complex velocity, and the rf-driven part of w is given by

wrf = −
τ∫

−∞

√
b(z(τ))
b(z(τ ′))

d

dτ ′
(
ε(z(τ ′)) cos τ ′

)
× exp


−i

τ ′∫
τ

b(z(τ ′′)) dτ ′′


 dτ ′. (34)

Near the cyclotron resonance, in the leading-order approximation one can take b ≈ 1 and replace the full-time

derivative under the integral with f1 = −ε sin τ ′, as the remaining term f2 = ε̇ cos τ ′ is relativistic and represents the
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higher-order correction. Indeed, the term f2 could contribute significantly to wrf in abrupt fields, where the magnetic

rf field is large compared to the electric rf component. However, in the worst case of a delta-shaped ε′(z), taking a

nonzero f2 into account would yield only a small correction δwrf ∼ ε, which is much less than wrf as can be seen from

the following estimate. Let us put Eq. (34) in the form

wrf =

τ∫
−∞

ε(z(τ ′)) exp


−i

τ ′∫
τ

b(z(τ ′′)) dτ ′′


 sin τ ′ dτ ′. (35)

To estimate wrf , suppose the simplest case when vz changes insignificantly during the interaction, the rf field is

approximately uniform across the resonance region, and the dc magnetic field changes linearly in the vicinity of the

resonance (Sec. IV). Applying the steepest descent method to the integral (35), one gets for τ → ∞:

|wrf | = ε

√
πLB

2vz
(36)

[in compliance with Eq. (21)], or

wrf ∼ ε
√

Λ. (37)

Despite in abrupt fields the expressions (22), (36) are invalid, the scalings (23), (37) yet hold (see Sec. VIII) if Λ is

defined according to

Λ ∼ 1
(1 − b(z̄))2

� 1, (38)

where z̄ stands for the edge of the nonadiabatic region and can be obtained from Eq. (10). Further, we accept Eq. (38)

as the general definition of Λ.

Now consider τ(z, τ0) as the moment of time when a particle arrives at a given location z if launched at the moment

τ0 from the given location z0:

τ(z, τ0) = τ0 +

z∫
z0

dz′

vz(z′, τ0)
. (39)

(Note that, generally, vz may represent a multivalued function, and the integration should be performed over the

particle trajectory including all the branches of vz(z).) Assuming (39), let us rewrite Eq. (35) as

wrf =
1
2i

(
h+e−iχ++iτ − h−e−iχ−−iτ

)
, (40)

where we introduced the quantities

h±(z, τ0) =

z∫
z0

ε(z′) eiχ±(z′,τ0)
dz′

vz(z′, τ0)
, (41a)

χ±(z, τ0) =

z∫
z0

(b(z′) ± 1)
dz′

vz(z′, τ0)
. (41b)

The functions h± approximate the complex amplitudes of the rf-driven velocities of opposite circular polarizations,

and thus h− � h+, as the rf field pumps up primarily the cyclotron-resonant component of the particle velocity. More
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precisely, the functions scale like h± ∼ ε/(1 ± b), meaning that

h−/h+ = O(
√

Λ). (42)

In terms of h±, the expression for the rf-produced energy gain Erf = 1
2 |wrf |2 can be put in the form

Erf =
1
8

(
|h+|2 + |h−|2

)
+

1
8

(
h+h∗

−e2iτ0 + c.c.
)
, (43)

or, taking Eq. (42) into account,

Erf =
|h|2
8

, h ≡ h−. (44)

Then, to the leading-order approximation, one can estimate the rf-produced change of the particle magnetic moment

∆µrf ≡ 〈Mrf〉(∞) with the following expression:

∆µrf ≈
1
8
〈|H |2〉, (45)

where H ≡ h(z(∞)),

H(τ0) =
∫

ε(z) eiχ(z,τ0)
dz

vz(z, τ0)
, (46)

and χ ≡ χ−. As seen from the derivation, the expression holds for arbitrary (both smooth and abrupt) profiles of

the dc magnetic field and the rf field. Therefore, studying the properties of H considered as a functional of the field

profiles ε(z), b(z) and the particle trajectory z(τ, τ0) can yield a complete information about the particle transverse

heating under fairly general conditions.

Thereby, let us ask a question if it is possible to adjust ε(z) and b(z) to minimize transverse heating for the majority

of particles, whose longitudinal velocities vary in a wide range ∆vz ∼ vz. To answer that, let us first rewrite the

expression for H in the following form:

H = i

∫
V (z)

deiχ

dz
dz, V (z) =

ε(z)
1 − b(z)

. (47)

To figure out the physical meaning of the function V (z), note that the rf-driven oscillations of the particle transverse

velocity in the adiabatic regime (12) can be expressed as

vrf(z, τ) ≈ 1
2

V (z)u(τ), (48)

where u = (− cos τ, sin τ) depends entirely on τ . Thus, V (z) can be thought of as the amplitude of adiabatic rf-driven

oscillations. One can see that if V (z) is smooth compared to eiχ everywhere along the particle trajectory (which, for

transmitting particles, requires also that ε(z) must be equal to zero at the resonance), the integral

H = −i

∫
eiχdV (49)

is exponentially small irrespectively of v0. Though trivial for adiabatically reflected particles, this statement is

important when applied to those which penetrate the resonance region, as it predicts that a reversible ponderomotive

barrier can be formed even for transmitting particles.
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Hence, to ensure that the transverse heating becomes small for all particles irrespectively of their velocity, the

amplitude of adiabatic rf-driven oscillations V (z) must change little in a period of these oscillations. In other words,

one must have

ε(z)
1 − b(z)

≈ const (50)

within the whole region of resonant interaction, yet the functions ε(z) and b(z) are not required to be constant or

even continuous by themselves (see Sec. VIII).

VI. AVERAGE LONGITUDINAL FORCE: GENERAL APPROACH

Now let us calculate the average force accelerating a particle in the direction parallel to the dc magnetic field. In

this section, we will present the general approach to this problem, while the calculation of the longitudinal force for

particular cases of interest will be given in Sec. VII, VIII (see also Appendix A).

Under the conditions of adiabatic approximation (10), the longitudinal force Fz = v̇z can be obtained by differen-

tiating Eq. (14):

Fz = − d

dz

(
µb + Φ

)
. (51)

However, this expression does not adequately describe the particle motion near the cyclotron resonance, where Φ

experiences a singularity. However, even in this case, under certain conditions, one can also derive a relatively

simple expression for Fz, from which fundamental qualitative conclusions can be made regarding the longitudinal

acceleration. Consider the full longitudinal force Fz = Fε + Fb where the force applied to a particle from the rf field

is Fε = vxε′ cos τ , and the one applied from the dc magnetic field is Fb = 1
2 (xvy − yvx) b′. Let us put Fz in the form

Fz =
dU

dz
− ε

d

dz
(vx cos τ) + (xvy − yvx)

b′

2
, (52)

where d/dz stands for the full derivative

d

dz
=

∂

∂z
+

1
vz

∂

∂t
, (53)

and U is given by U = εvx cos τ . In terms of ρ and w, one gets

Fb = −b′

2
= (ρw∗) = −Mb′, M = −r2φ̇

2
, (54)

where M is the magnetic moment of the particle. In a uniform magnetic field without an rf drive, one has M = v2
⊥/2b,

which also yields a good approximation for M if the local motion is only slightly perturbed from circular by an rf

field or a dc field inhomogeneity. (Note that in smooth fields, when ε(z) has a maximum at the cyclotron resonance,

one has Fε � Fb in the resonance area, hence a particle is accelerated toward weaker dc field at all z.)

Using Eq. (28), one gets for M averaged over initial gyrophases φ0:

〈M〉φ0 = 〈Mf〉φ0 + 〈Mrf〉φ0 , (55)
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where Mf stands for the magnetic moment of free Larmor oscillations determined by the particle initial velocity,

and Mrf is the rf-produced part of the total magnetic moment. Then, if averaged over the initial gyrophase φ0, the

longitudinal force (52) applied to a particle at given z can then be written as

〈Fz〉 = 〈F0〉 + 〈Frf〉 + 〈∆F1〉 + 〈∆F2〉, (56)

where we omitted the φ0 subindex for clarity and introduced the following quantities:

〈F0〉 = −〈Mf〉b′, (57a)

〈Frf〉 =
d

dz

(
〈U〉 + (1 − b)〈Mrf〉

)
, (57b)

〈∆F1〉 = −ε
d

dz
〈vx cos τ〉, (57c)

〈∆F2〉 = (b − 1)
d〈Mrf〉

dz
. (57d)

The force 〈F0〉 is the one a particle would “feel” in the same magnetic field without the rf drive. The other terms

stand for rf-driven forces to be calculated below.

First, let us estimate the order of those. Assuming Mrf ∼ ε2Λ (see Sec. V), one has each of the terms to be of

the same order. However, while the diamagnetic force proportional to the change of Mrf continues to accelerate a

particle in a nonuniform dc magnetic field even away from the rf field, the terms 〈∆F1〉 and 〈∆F2〉 disappear as ε

goes to zero. To ensure that the expression for the total force will allow calculating the particle longitudinal energy

change

〈∆E||〉 =
∫
〈Fz〉 dz (58)

with an error small compared to Φ ∼ ε2
√

Λ, one may evaluate the forces 〈∆F1〉 and 〈∆F2〉 in the leading order with

respect to Λ using Eq. (35) instead of Eq. (34).

Let us put the expressions for 〈∆F1〉 and 〈∆F2〉 in the following form:

〈∆F1〉 = −ε<G′, 〈∆F2〉 = (b − 1)E ′
rf , (59)

where G = 〈wrf cos τ〉, and where we took into account that it is only the rf-driven term that contributes to the G.

Using the results obtained in Sec. V, one gets immediately

〈∆F2〉 = −(1 − b)
d

dz

|h|2
8

. (60)

Obtaining a simple formula for 〈∆F1〉, in turn, requires rewriting the expression for G,

G =
h+e−iχ+

4i

(
1 + e2iτ

)
− h−e−iχ−

4i

(
1 + e−2iτ

)
. (61)

Making certain assumptions about the fields structure allows to simplify Eq. (61) and proceed with derivation, as we

do below.
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VII. SMOOTH FIELDS

In smooth fields where the spatial scales of a dc field and an rf field far exceed the particle longitudinal gyroradius

(LB/vz � 1, LE/vz � 1), one can average the longitudinal force over the oscillation period. As the condition (16)

provides that the number of oscillations within the resonance region N ∼
√

Λ is also large compared to unity, such

averaging can be performed not only in the adiabatic region, but near the cyclotron resonance as well.

By averaging Eq. (61) over the fast particle oscillations, one gets

ε 〈G′〉 =
vz

4i

(
|h′

+|2 − |h′
−|2

)
− 1

4
(1 + b)h+h′∗

+ − 1
4

(1 − b)h−h′∗
−, (62)

where we took into account that

ε

vz
e−iχ± =

dh∗
±

dz
(63)

and denoted averaging over τ with angle brackets. Thus, using Eq. (42), one can write approximately

〈∆F1〉 = (1 − b)
d

dz

|h|2
8

, (64)

so that

〈∆F1〉 + 〈∆F2〉 = 0. (65)

Finally, noting that in smooth fields µ0 ≡ 〈Mf〉 = const, one can formulate the obtained results as follows: In

smooth fields, the average of the longitudinal force over the fast particle oscillations and the initial gyrophase φ0

simultaneously is given by

〈Fz〉 =
d

dz

(
〈U〉 + (1 − b)〈Mrf〉 − µ0b

)
, (66)

〈U〉 = −vz

4
=

(
h

dh∗

dz

)
. (67)

First, note that the obtained expressions reproduce the adiabatic model for smooth fields outside the resonance, as

in the limit (10) one has

〈U〉 = − ε2

4(1 − b)
, 〈Mrf〉 =

ε2

8(1 − b)2
, (68)

so that the ponderomotive force (51) is recovered with the potential (15) evaluated in the limit |1− b| � 1. However,

an important result can be obtained from Eq. (66) for nonadiabatic motion as well. Indeed, the advantage of the

representation (66) is that 〈Fz〉 can be easily integrated along the particle trajectory with known boundary conditions

〈U〉(±∞) = 0, 〈Mrf〉(−∞) = 0,

〈Mrf〉(+∞) = 〈∆µ〉 (69)

to obtain the net longitudinal energy change (58) as a function of the transverse heating:

〈∆E||〉 = 〈∆µ〉 (1 − b0). (70)
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For the transverse and the total particle energy changes, one then gets

〈∆E⊥〉 = 〈∆µ〉 b0, 〈∆E〉 = 〈∆µ〉, (71)

where the change of the particle magnetic moment yields 〈∆µ〉 = ∆µrf and is given by Eq. (45).

The formulas (70), (71) are analogous to the known result 〈∆E〉 = 〈∆µ〉 for smoothly inhomogeneous fields (below

we will show that this result has a broader region of applicability), easily derivable (see, e.g., Ref. [27]) if the dc

magnetic field local inhomogeneity is totally neglected (Λ = ∞). The new result, however, is the accuracy of Eq. (70).

As follows from our analysis, the error of Eq. (70) is of the order of ε2, which is much less than Φmax even for finite

Λ. Hence, in case when the condition (50) is satisfied, that is in the case of zero transverse heating, particles cannot

be accelerated along the magnetic field: the average longitudinal momentum of the order of v̂, which they gain while

being accelerated adiabatically, is compensated by the momentum gained by particles inside the resonance region.

The consequence of this effect will be discussed in the next sections.

VIII. ABRUPT FIELDS

Let us now consider the opposite case of abrupt fields, where, even if the phase-dependent velocity modulation

by the rf wave (∂vz/∂τ0) is substantial, the region of nonadiabatic motion is yet short enough to provide that the

longitudinal phase modulation is negligible:

∂τ(z, τ0)
∂τ0

− 1 =
∂

∂τ0

∫
dz

vz(z, τ0)
� 1, (72)

where the integral is taken over the resonance region. This condition allows us to accept a random rf phase approx-

imation (RPA) for particles entering the resonance region with a given longitudinal velocity, under which a simple

expression for Fz can be obtained by averaging over the particle ensemble.

To proceed, let us also accept the “equivalent path approximation” (EPA), by which we will mean that all particles

with a given initial velocity follow the same path, irrespectively of their initial rf phases τ0 (and φ0, as also implicitly

assumed before), yet z(τ) may be different for different particles. In this case, one can introduce a force acting on an

average particle by averaging over τ0 and φ0 the true longitudinal force Fz(z, τ0, φ0), which particles experience at

given location z. While 〈Frf〉 and 〈∆F2〉 are averaged over τ0 straightforwardly, it remains to perform the averaging

of 〈∆F1〉, for which one gets

〈∆F1〉 = (1 − b)
d

dz

|h|2
8

− ε<〈δG′〉 (73)

with the rapidly oscillating part of G given by

δG =
1
4i

(
h+e−iχ++2iτ − h−e−iχ−−2iτ

)
. (74)

Expressing h± in terms of χ±,

h±(z, τ0) = −i

z∫
z0

ε(z′)
b(z′) ± 1

d

dz′
eiχ±(z′,τ0) dz′, (75)
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one can see that 〈δG〉τ0 ≈ 0 under the RPA. Hence, under the valid RPA and EPA in abrupt fields, the longitudinal

force averaged simultaneously over the initial rf phase τ0 and the initial gyrophase φ0 is given by

〈Fz〉 = 〈F0〉 +
d

dz

(
〈U〉 + (1 − b)〈Mrf〉

)
, (76)

with 〈U〉 again given by Eq. (67). Note that the force 〈F0〉 no longer remains conservative in this case, since in abrupt

magnetic field µ is not a conserved quantity even in the absence of the rf drive.

The RPA condition within the resonance region does not prevent from inertial bunching of particles behind it. It

means that the equality (76) can be violated after the particles have undergone a complete transition through the

resonance region. However, in the smooth fields behind the resonance, Eq. (66) becomes valid for the φ0-averaged

force applied to particles launched at each particular τ0. Let us assume again that particles start and finish their

motion in regions with the same magnetic field b = b0. Then, averaging the longitudinal force both over τ0 and φ0

and integrating over the whole trajectory, one gets

〈∆E||〉 = ∆µrf (1 − b0) − ∆µbb0, (77)

where we introduced the quantity

∆µb = − 1
b0

∫
〈F0〉 dz. (78)

Outside the rf field, the particle magnetic moment M matches µ, and thus

〈∆µ〉 = ∆〈Mf〉 + ∆µrf , (79)

The average transverse energy change is then given by

〈∆E⊥〉 = ∆〈Mf〉b0 + ∆µrfb0, (80)

and the total energy change yields

〈∆E〉 = ∆µrf +
(
∆〈Mf〉 − ∆µb

)
b0. (81)

For a given trajectory z(τ), ∆〈Mf〉 does not depend on the rf field strength. Thus, from the fact that ∆E = 0 at

ε = 0 (as the dc magnetic field does not change the particle energy), it follows that ∆µb = ∆〈Mf〉. Therefore, ∆µb

stands for the particle magnetic moment change caused by abrupt inhomogeneities of the dc magnetic field. Finally,

the longitudinal, the transverse, and the total particle energy changes can be expressed as

〈∆E||〉 = 〈∆µ〉(1 − b0) − ∆µb, (82a)

〈∆E⊥〉 = 〈∆µ〉b0, (82b)

〈∆E〉 = ∆µrf , (82c)

where the change of the particle magnetic moment is given by

〈∆µ〉 = ∆µb + ∆µrf , (83)
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with ∆µb accounting for the dc field inhomogeneity, and ∆µrf accounting for the rf heating. Note that the previously

obtained Eqs. (70), (71) can be considered as a special case of Eqs. (82) with ∆µb = 0 – just as one could expect for

a smooth field configuration.

To calculate ∆µrf for a case of an abrupt field, suppose that the particle motion remains adiabatic along the whole

trajectory except for a short (compared to the oscillation period) time when the particle crosses a single “boundary”

at z = 0, where the rf field and the dc magnetic field have a discontinuity:

ε(z) = ε1 + θ(z)(ε2 − ε1), (84a)

b(z) = b1 + θ(z)(b2 − b1). (84b)

Here θ is the Heaviside’s step-function, b1,2 ≶ 1 (or vice versa), and

Λ ∼ 1
(1 − b1)2

∼ 1
(1 − b2)2

(85)

is a large number. Then, from Eqs. (45), (46), it follows that

∆µrf ≈
1
8

(
ε1

1 − b1
− ε2

1 − b2

)2

. (86)

As one can see from Eq. (86), heating does not vanish even in the limit when the time of crossing the resonance region

is infinitesimally small, which results from a nonzero leap of the oscillatory velocity [vrf ] over the resonance. Indeed,

to the leading order, one has

[vd] = [v] − [vrf ] ≈ vrf,1 − vrf,2, (87)

so that, generaly, the obtained rf-caused change of µ, ∆µrf ≈ 1
2 〈[vd]2〉, is of the order of ε2Λ, unless the ratio of the

rf field amplitudes ε1/ε2 is appropriately chosen to reduce the heating. However, if

ε1

ε2
≈ 1 − b1

1 − b2
, (88)

∆µrf becomes of the order of ε2, in accordance with Eq. (50) obtained under more general consideration.

One can also come to Eqs. (82), (86) using an alternative approach, which we will further show to yield more results

of interest, and which is hence worth considering in details here. Applying the quasi-energy and µ conservation laws

to the particle motion before and after crossing the resonance, one gets

E||,0 + µ0b0 = E||,1 + µ0b1 + Φ1, (89a)

E||,2 + µ2b2 + Φ2 = E||,3 + µ2b0, (89b)

where µ2 = µ0 + ∆µ, and Φ1,2 are the values of the ponderomotive potential on each side of the resonance. As the

particle crosses the resonance, its total energy is approximately conserved:

E||,1 +
v2
⊥,1

2
= E||,2 +

v2
⊥,2

2
, (90)

where v⊥ stands for the total transverse velocity, including both the drift and the oscillatory velocities. However,

each of the components of v experiences a finite change when the particle crosses the resonance, as the transverse
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magnetic field (both rf and dc) is δ-shaped for abrupt ε(z) and b(z). To calculate the transverse velocity change for

transmitting particles, consider the motion equations (9) from where one gets (assuming [r] = 0):

[vx] = (ε1 − ε2) cos τ − y(b1 − b2)/2, (91a)

[vy] = x(b1 − b2)/2. (91b)

Using the above expressions, one can calculate the change of the particle magnetic moment (83) averaged over the

initial cyclotron and rf phases:

∆µb = Ψ
(b1 − b2)2

8b1b2
, (92)

∆µrf ≈
1
2

(vrf,1 − vrf,2)
2
, (93)

where Ψ = 〈r2
d,1〉b1, and rd,1 is the particle drift displacement just before crossing the resonance.

Further, from the quasi-energy conservation (89), it follows that

∆E|| = ∆µ (1 − b0) + Q, (94)

where ∆E|| ≡ E||,3 − E||,0 and

Q =

[
Φ − v2

⊥
2

− µ (1 − b)

]
. (95)

Now substitute Eqs. (83) and (91) into the above expression to get

〈Q〉 = −∆µb + O
(
ε2

)
. (96)

Finally, we obtain for the change of the transmitting particle longitudinal energy:

〈∆E||〉 = ∆µrf(1 − b0) − ∆µb b0 + O
(
ε2

)
, (97)

while the transverse and the total energy changes are given by

〈∆E⊥〉 = 〈∆µ〉 b0, 〈∆E〉 = ∆µrf + O
(
ε2

)
. (98)

Note that similar expressions can be derived for reflecting particles as well. Indeed, for a reflecting particle one has

[v⊥] = 0, as seen from Eqs. (91), where one should take b2 = b1, as the particle eventually returns to the initial

magnetic field. (In more details, particle longitudinal dynamics in abrupt fields is discussed in Appendix B and

Sec. X.) Then, ∆µ = 0, and 〈∆E||〉 = 〈∆E⊥〉 = 〈∆E〉 = 0, in compiance with Eqs. (97), (98).

The main results we have presented up to this point are formulated in Eqs. (45)-(46) and Eqs. (82), (83), valid for

both transmitted and reflected particles in case of smooth and abrupt fields with arbitrary rf polarization (see also

Appendix A). The application of these results to the ponderomotive current drive problem constitutes the subject of

the second part of the paper.
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IX. HEATING VS. ACCELERATION

Let us show how our results give the fundamental constraints on the extent, to which the asymmetry of the

ponderomotive barrier can be sustained. Consider particles traveling from the weak-field side of the barrier (Ω < ω,

or, for clarity, z < 0) with initial longitudinal velocity vz = vz,0 and magnetic moment µ = µ0. Suppose these particles

are reflected adiabatically at some point zr < 0, so that for each z within the adiabatic region for which zr < z < 0,

the following condition is satisfied:

E||,0 + µ0(b0 − b(z)) − Φ(z) < 0, (99)

where E||,0 is the initial longitudinal energy, and b0 ≡ b(±∞). Consider now particles traveling from the strong-field

side (Ω > ω, or z > 0) with initial longitudinal velocity vz = −vz,0 and the same initial magnetic moment µ = µ0.

Suppose these particles transit through the barrier and penetrate the region of adiabatic motion at z < 0 with the

longitudinal energy change given by

∆E|| = ∆µ (1 − b0) + Q. (100)

Combining the results of Sec. VII, VIII (and Appendix A), we interpret Q as any nonadiabatic contribution, or

“longitudinal heating”, provided by abrupt variations of a dc magnetic field or an rf field. Using the quasi-energy

conservation together with the above equality, one gets:

E|| + (µ0 + ∆µ) b(z) + Φ(z) = E||,0 + ∆µ + µ0b0 + Q. (101)

Since E|| is positively defined, one thus may note that the particle cannot be found at any location z < 0, for which

the following sufficient condition is satisfied:

E||,0 + µ0(b0 − b(z)) − Φ(z) < ∆µ (b(z) − 1) − Q. (102)

If ∆µ = 0 and Q = 0, the conditions (99) and (102) coincide. Therefore, at any z within the adiabatic region for

which zr < z < 0, there can be no particles transmitted through the barrier in this case.

To ensure that particles traveling from the weak-field side do not penetrate further than up to zr, while those

symmetrically traveling from the opposite side may be found at z > zr after crossing the resonance, the following

condition must be satisfied:

∆µ (b(z) − 1) − Q < W (z) < 0, (103)

where W stands for the left-hand side of Eqs. (99) and (102). The necessary condition for the obtained inequality to

be possible is

∆µ > − Q

1 − b
, (104)

as motion at the weak-field side (b < 1) is considered.
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Suppose now that the RPA and the EPA are valid, so that the average rf longitudinal heating is zero in compliance

with Eqs. (82a), (96). Then, for an average particle to be transmitted, one must have

〈∆µ〉 >
∆µb

1 − b
, (105)

which means, at least, that 〈∆µ〉 > 0. Hence, under the RPA and the EPA for smooth and abrupt field profiles

of arbitrary polarization, where the average rf-driven longitudinal heating is always zero, the following statement is

true: If particles with initial longitudinal velocity vz,0 and initial magnetic moment µ0 are adiabatically reflected

from the barrier, then particles with initial longitudinal velocity −vz,0 and the same initial magnetic moment will

also be reflected from the barrier, unless they experience finite rf heating. In other words, a heating-free barrier is

symmetric: If one makes all the particles from one side to reflect adiabatically, then, to ensure that particles traveling

from the other side are not reflected, one must heat them. A proper adjustment of the field structure [see Eq. (50)]

could reduce heating, but such an adjustment would automatically ruin the asymmetry of the barrier. Namely, in

this case, the average momentum imparted by the adiabatic force would be compensated by the average momentum

nonadiabatically gained by particles within the resonance region. This fact remains in agreement with the argument

given in Sec. II, where we predicted from the first principles that a heating-free barrier cannot produce a current.

Let us estimate the minimum heating required for sustaining the asymmetry of a barrier. Suppose that a barrier

adiabatically reflects particles with longitudinal energies E||,0 < E∗, while particles traveling backwards with the same

initial parameters are transmitted. Then, for all E||,0, one has zr(E||,0) < z∗, where z∗ ≡ zr(E∗) < 0. A necessary

condition for particles traveling from the strong-field side to appear at z∗ is

E||,0 + µ0(b0 − b(z∗)) − Φ(z∗) > ∆µ (b(z∗) − 1) − Q, (106)

which can also be put as follows:

∆µ (b(z∗) − 1) − Q < Φ(zr) − Φ(z∗) + W (zr). (107)

where we neglected the term µ0(b(zr)− b(z∗)) = O(ε2). By definition of zr, one has W (zr) = 0 and b(z∗) < 1, so that

the above condition takes the form

∆µ >
Φ(z∗) − Φ(zr) − Q

1 − b(z∗)
. (108)

Under the RPA and the EPA, one has 〈Q〉 = 0 in case of negligible ∆µb. Then, taking for the majority of particles

z∗ − zr of the order of z̄, one obtains the following restriction on the minimum transverse heating:

〈∆µ〉 = O
(
ε2Λ

)
. (109)

Although Eq. (109) is a necessary condition, the obtained scaling simultaneously coincides with the maximum possible

〈∆µ〉 an rf barrier can yield (see Sec. V). Thus, Eq. (109) represents also a sufficient condition for sustaining the

asymmetry of an rf barrier with zero average longitudinal rf heating.

The only way to avoid strong transverse heating while having an asymmetric a barrier is to provide that Q >

Φ(z∗) − Φ(zr), as Eq. (108) allows reducing ∆µ down to zero in this case. Thus, in principle, an rf barrier can
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transmit particles incident from the strong-field side, which experience primarily longitudinal heating

Q = O(ε2
√

Λ) > 0, (110)

while particles traveling backwards with the same initial energy and magnetic moment are reflected adiabatically.

For obtaining the current drive effect, the condition (110) must be satisfied in average over particles interacting with

the rf field. As under the RPA and the EPA, Eq. (110) cannot be satisfied, one of the two assumptions must be

violated. In Sec. X, we show how the EPA can be broken in an abrupt-field configuration and propose a concept of

the reduced-heating current drive scheme based on this method.

X. ACCELERATION VIA LONGITUDINAL HEATING

To see how a nonzero average heating can be achieved in a simple field geometry, consider an abrupt-field configu-

ration (84), where

b1 = 1 ∓ α√
Λ

, b2 = 1 ± 1√
Λ

(111)

(α > 0), and the rf field satisfies the reduced-heating condition (50): ε1 = −αε2 (Fig. 3). Applying the analysis

similar to that given in Sec. V, one gets for φ0-averaged quantities:

〈∆µ〉φ0 = ∆µb + O
(
ε2

)
, (112)

〈Q〉φ0 = ±1 + α

4α
v̂2 cos 2τ̂ − ∆µb + O

(
ε2

)
, (113)

where v̂2 = |ε1ε2|
√

Λ. The moment τ̂ , at which a particle passes the resonance, is given by

τ̂ = τ0 +
∫ 0

z0

dz

vz(z)
, (114)

where the second term is approximately τ0-idependent, as particles move adiabatically before reaching the “boundary”

(z = 0).

Assume µ0 = 0 and neglect ∆µb for clarity. All particles incident from the weak-field side are reflected by the

ponderomotive force at z < 0 if vz,0 < 1
2 v̂. Also, if β < − cos 2τ̂ , where

β =
2α

1 + α

(vz,0

v̂

)2

, (115)

a particle is reflected nonadiabatically, while its transverse energy is still conserved. While the energy of a reflected

particle is preserved, the longitudinal energy of a transmitted particle after the interaction with the rf field is changed

according to

∆E||(τ̂ )
E||,0

= ± 1
β

cos 2τ̂ (116)

(vz,0 ≶ 0), as follows from Eq. (113). If vz,0 > 1
2 v̂ and β > − cos 2τ̂ , a particle traveling from the weak-field side

is transmitted automatically. To derive the transmission condition for a particle traveling from the strong-field side,



22

note that a substantial contribution into the energy change (116) is provided by the reversible ponderomotive force

already after the particle has passed the nonadiabatic region. In other words, after a transmitted particle leaves

the rf field, its longitudinal energy is always larger than Φ1, yet the particle velocity immediately after crossing the

boundary is given by

(vz)z=0−
vz,0

=

√
1 − 1

β

(
cos 2τ̂ +

α

2(1 + α)

)
. (117)

Thus, the transmission takes place if

β >
α

2(1 + α)
+ cos 2τ̂ , (118)

and no particles are reflected on the strong-field side if

β >
3α + 2

2(1 + α)
. (119)

The above calculation shows that, in abrupt fields, the EPA is violated for sufficiently low velocities. Hence, the

proposed configuration can operate as an asymmetric barrier, which adiabatically reflects all particles incident from the

weak-field side with E||,0 < 1
8 v̂2, while transmitting [with ∆E|| given by Eq. (116)] some of those traveling backwards

without substantial transverse heating. The outcome of the wave-plasma interaction will be an uncompensated

current of transmitted particles through the resonance region, as those which are reflected (on any side) carry no

current whatsoever. The fraction R of reflected particles with a given initial velocity among those, which are incident

from the strong-field side, can be written as

R =
1
2π

2π∫
0

θ

(
cos 2τ̂ +

α

2(1 + α)
− β

)
dτ̂ (120)

under the assumption of uniform distribution of initial phases. Hence, the transmission coefficient T = 1 −R equals

T =
1
π

arccos
(

α

2(1 + α)
− β

)
. (121)

For β < α
2(1+α) (which matches the condition of adiabatic reflection of particles symmetrically incident from the

weak-field side), one gets

1
π

arccos
(

α

2(1 + α)

)
≤ T ≤ 1

2
, (122)

from where it follows that 1
3 ≤ T ≤ 1

2 . For α = 1, Eq. (122) yields 0.42 < T < 0.5, which means that, roughly, a half

of all particles incident from the strong-field side is transmitted.

Let us now address the question if the current drive can be practiced alternatively through violation of the RPA

(rather than the EPA) in more complicated field configurations. To break the RPA, one needs the inertial phase

modulation within the resonance region

∆τ = ∆
(

z̄

vz

)
∼ ∆vz

vz
τ̄ , (123)

to be of the order of unity, where ∆vz stands for the phase-dependent rf velocity modulation, and τ̄ = z̄/vz is the

time a particle needs to pass the resonance region. In plasmas with thermal velocity spread δvz ∼ vth, phase mixing
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will depress the average longitudinal heating if τ̄ � 1, hence τ̄ . 1 is necessary. Thus, for efficient particle bunching

within the resonance region one needs ∆vz/vz & 1, which, in turn, requires vth ∼ v̂. As the phase-dependent part of

the longitudinal force can both accelerate and decelerate particles (as we showed above), a significant part of those

traveling from the strong-field side will be reflected from the barrier in this case. It means that the violation of the

RPA in a plasma would automatically lead to the violation of the EPA, which will make the current drive scheme

similar to the one proposed above.

What we have shown here is that by abruptly modifying the phase of the electric fields, it is possible to heat

electrons longitudinally with an energy gain proportional to
√

Λ, rather than in transverse direction with an energy

gain proportional to Λ. Since Λ � 1 is contemplated, the rearrangement in velocity space with less heating has three

advantages: First, it can avoid relativistic effects (which limit the current drive efficiency particular for longitudinal

heating). Second, by limiting the energy of the affected particles it keeps the distribution function closer to Maxwellian,

thereby leaving less free energy for unwanted instabilities. And, three, heating particles in the longitudinal rather

than the transverse direction allows avoiding production of the unwanted Ohkawa current in toroidal plasmas [28],

which otherwise is generated by transversely heated particles trapping in local “magnetic mirrors” formed because of

the system geometry.

One can compare to LHCD [29] and to ECCD [30] or to other means of driving rf currents [31]. In both LCCD and

ECCD, electrons are moved to higher energy, thereby becoming less collisional and thus realizing greater current be-

fore slowing down. In the case of the less efficient asymmetric ponderomotive current drive [11], the effect of reflection

(which is most efficient) was mitigated by being averaged with the effects of current drive through heating longitu-

dinally (LCCD) or transversely (ECCD). In the case of the optimized APCD, the reflection current is accomplished,

but the mitigation effects are less, because there is less heating as described above.

The ability to change fields abruptly will be easier in reflecting ions rather than electrons, because of the larger ion

gyroradius. In particular, the minority species current drive effect [32] operates similarly to the ECCD [30] effect,

except that the effect is practiced in minority ions rather than electrons. Thus, reflecting minority ions through a

one-way ponderomotive well similarly drives current with potentially higher efficiency.

It remains, however, to identify how the effect might be implemented in a plasma device in a practical manner.

First, it remains to identify suitable plasma waves that can be excited in confinement devices of interest, producing

a very localized, intense rf field, so that nearly all particles in a flux tube can be reflected. Second, the fields must

change sharply enough compared to the thermal gyroradius, which makes the proposed scheme more suitable for

operating on ions rather than electrons. However, note that the optimized arrangement tolerates larger Λ, whether

the method involvels ion or electron acceleration, and so operates with more easily implementable magnetic field

gradients. Nonetheless, we expect that the new method is more likely to find use on linear and, perhaps, non-fusion

plasma devices.
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XI. NUMERICAL RESULTS

In this section, we present the results of numerical calculations of single-particle orbits for various field profiles and

show that these calculations support our theoretical predictions.

A. Smooth fields with even ε(z)

Particle orbits were traced for the fields

b(z) = 1 +
z

LB
, ε(z) = a exp

(
− z2

L2
E

)
, (124)

with parameters given in Table I and vz,0 ∼ v̂. First, consider particles which travel from the strong-field side of

the barrier (Ω > ω). The numerical results are shown in Fig. 4, 5. All particles are seen to transmit through the

resonance region, experience transverse cyclotron heating near z = 0, and undergo adiabatic diamagnetic acceleration

afterwards. The less is the initial longitudinal velocity, the more time a particle spends near the resonance. Thus,

the more transverse energy it gains, and the stronger diamagnetic acceleration follows the resonant interaction. The

asymptotic analytic approximation for ∆E⊥ is found to be in reasonable agreement with numerical results even for

vz,0 ∼ v̂ (Fig. 6).

Consider now particles, which travel from the weak-field side of the barrier (Ω < ω). The numerical results are

shown in Fig. 7, 8. Particles with vz,0 � v̂ adiabatically reflect from the barrier without substantial gain of transverse

energy. Others penetrate the region of resonant interaction and experience transverse heating near z = 0. Since they

gain a finite magnetic moment, behind the barrier these particles continue to “feel” decelerating diamagnetic force.

To clarify the heating process for reflecting particles, we also present three-dimensional (3D) figures, which show both

particle trajectory z(τ) and the evolution of transverse energy E⊥ (Fig. 9).

The energy constraint, which connects the longitudinal and transverse energy gain, has also been checked numer-

ically. The error δE ≡ ∆E|| − (1 − b0)∆µ was found to be less than 10−3 in units a2
√

Λ. Thus, δE � Φmax for all

(both for reflected and transmitted) particles, as predicted.

B. Smooth fields with odd ε(z)

Particle orbits were traced for the fields

b(z) = 1 +
z

LB
, ε(z) = az exp

(
− z2

L2
E

)
, (125)

with parameters given in Table I and vz,0 ∼ v̂. From our analytical model, it is expected that in such a field

configuration particles should not get heated, as the condition (50) is satisfied within the resonance region with good

accuracy. It is also predicted that such a heating-free barrier must yield completely reversible particle motion and

have symmetric reflecting properties.

These expectations are confirmed by our numerical results. In Fig. 10, the phase portrait of the longitudinal particle

motion shows that the established ponderomotive potential is indeed reversible at all z. The reflection properties of the
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LB 100

LE 10

a 10−3

v̂ = a4/5L
1/5
B 0.01

Λ = LB/v̂ 104

z̄ =
√

LB v̂ 1

µ0 0

TABLE I: Parameters for numerical calculations of particle motion in smooth fields (124), (125).

barrier are symmetric, meaning that if a particle traveling with initial velocity vz,0 is transmitted (reflected) through

the barrier, a particle with initial velocity −vz,0 would also be transmitted (reflected) by the barrier, assuming equal

µ0 for the two. In Fig. 11, 12, 13, it is shown that the energy gain for both transmitted and reflected particles

incident from both sides is small. In general, such an rf field behaves as an adiabatic barrier, as the rf field has a

small amplitude close to the cyclotron resonance.

C. Abrupt fields

Particle orbits were traced for the fields

b(z) = 1 +
1√
Λ

tanh
( z

∆z

)
, (126a)

ε(z) = a exp
(
− z2

L2
E

)
, (126b)

with parameters given in Table II and vz,0 ∼ v̂, which simulates a single-boundary field configuration (84) with a

continuous ε(z) and α = 1 (see also Fig. 20). The following theoretical predictions (see Appendix B) were validated

numerically: The minimum particle velocity sufficient to allow a particle to reach the boundary is vz,0 ≈ 0.5 v̂ [Eq. (B3)

yields vz,0 = 1
2 v̂], to transmit through the boundary – vz,0 ≈ 0.87 v̂ [Eq. (B7) yields vz,0 =

√
3

2 v̂], to transmit through

the whole barrier – vz,0 ≈ v̂ [Eq. (B8) yields vz,0 = v̂] – see Fig. 14, 15. The transverse energy of transmitted particles

is approximately the same for all initial conditions [compare with Eq. (86)] – see Fig. 16. Minor variations in final

values of E⊥ for different vz,0 result from weak nonadiabaticity of the particle motion at |z| & ∆z. (Despite b(z) is

uniform far away from z = 0, the rf field inhomogeneity is sufficient to cause nonadiabatic effects, as long as b remains

close to unity. The effect is discussed in details in Refs. [16, 17].) The proportionality (82a) between the changes in

the longitudinal and the transverse energies has also been checked numerically, and the error ∆E|| − (1 − b0)∆µ was

found to be much less than Φmax.
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∆z 10−4

LE 10

a 10−3

Λ 104

v̂ = aΛ1/4 0.01

µ0 0

TABLE II: Parameters for numerical calculations of particle motion in abrupt fields (126), (127).

Particle orbits were also traced in abrupt field profiles with an odd ε(z):

b(z) = 1 +
1√
Λ

tanh
( z

∆z

)
, (127a)

ε(z) = −a exp
(
− z2

L2
E

)
tanh

( z

∆z

)
, (127b)

with parameters given in Table II and vz,0 ∼ v̂, which simulates a single-boundary field configuration (111), (84) with

an abrupt ε(z) yielding the condition (88) and α = 1 (Fig. 3). As predicted analytically, the transverse heating is

seen to be of the order of ∆µ . a2. The theoretical predictions on the longitudinal momentum gain [Eq. (116)] also

coincide with the results of numerical computations shown in Fig. 17.

Particle motion was also computed in a circularly-polarized rf field with field profiles (127). The phase portrait for

the longitudinal motion is shown in Fig. 18. As predicted for this case (see Appendix A), the transverse heating is

damped (Fig. 19), and, correspondingly, the established ponderomotive potential appears to be completely reversible

for all z.

XII. SUMMARY

In this paper, we showed that the action of an rf field on particles traveling along a dc magnetic field near the

cyclotron resonance is similar to what essentially constitutes an operation of a Maxwell demon. Namely, an rf field can

adiabatically reflect particles incident on the weak-field side of the ponderomotive barrier (Ω < ω), while transmitting

those incident on its strong-field side (Ω > ω). Unlike the true Maxwell demon (prohibited by the second law of

thermodynamics), an asymmetric barrier unavoidably heats particles, as they transit through the cyclotron resonance.

Under fairly general assumptions about the field structure and polarization, an analytical model of transverse heating

and longitudinal acceleration of particles shows fundamental correlations between the two effects.

A major result of this work is that we showed how to optimize the asymmetric ponderomotive current drive effect

(APCD) for allowable transformations of a charged particle velocity by an rf field. In particular, we showed that an

abrupt phase change in the rf field, coupled with an abrupt inhomogeneity of a dc field near the cyclotron resonance,

gives a much higher efficiency for the APCD effect than that calculated in Ref. [11]. The latter is due to the fact that
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in such a configuration, energetically expensive transverse heating is replaced by a less energy-consuming heating of

particles in the longitudinal direction. The method of optimization should be applicable to other applications of the

asymmetric ponderomotive barrier as well, where the amount and direction of unavoidable heating of the transiting

particles may be important.
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APPENDIX A: EFFECT OF POLARIZATION

To study how the rf polarization affects Eqs. (45)-(46) and Eqs. (82), (83), let us first consider the case when

particles are driven by an rf field of circular polarization with the vector potential

Arf = ε(z)
(
x0 cos τ − y0 sin τ

)
. (A1)

Since the rf field is then given by

Erf = ε(z)
(
x0 sin τ + y0 cos τ

)
, (A2a)

Brf = ε′(z)
(
x0 sin τ + y0 cos τ

)
, (A2b)

the motion equations can be put in the following form:

v̇x = vyb + yvz
b′

2
− d

dτ

(
ε cos τ

)
, (A3a)

v̇y = −vxb − xvz
b′

2
+

d

dτ

(
ε sin τ

)
, (A3b)

v̇z = (xvy − yvx)
b′

2
+ ε′ <

(
weiτ

)
. (A3c)

The average longitudinal force now yields Eq. (56), with

〈U〉 = ε<G, G = 〈weiτ 〉,

〈∆F1〉 = −ε<G′, 〈∆F2〉 = (b − 1) E ′
rf ,

where averaging is performed only over the initial gyrophase φ0. In the leading-order approximation, one gets

ẇ + ibw − ḃ

2b
w = − d

dτ

(
εe−iτ

)
, (A4)

and thus, approximately, wrf = ihe−iχ−iτ . Expressing Erf and G in terms of h and χ, one obtains

Erf =
|h|2
2

, G = ihe−iχ, (A5)

and thus

ε 〈G′〉 = ivz|h′|2 − (1 − b)hh′∗. (A6)
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Consequently,

〈∆F1,2〉 = ±(1 − b)
d

dz

|h|2
2

. (A7)

which yields Eq. (65). One can see that, in case of circularly polarized field, the derivation of Eq. (65) does not require

averaging over the rf phases of particles and thus automatically applies to both smooth and abrupt fields.

Finally, one can formulate the obtained results as follows: In case of an rf field with circular polarization (A1), the

average of the longitudinal force over the initial gyrophase φ0 is given by Eq. (76), where ∆µrf ≡ 〈Mrf〉(∞) and 〈U〉

are given by

∆µrf ≈
1
2
〈|H |2〉, 〈U〉 = −vz=

(
hh′∗

)
(A8)

both for smooth and abrupt fields. This statement is true for a rotationally symmetric dc magnetic field (8), but is

violated for an asymmetric field (e.g., B0 = −xb′ x0 + b z0). In the latter case, Eq. (76) can still be derived, yet that

requires additional averaging over the rf phase, as discussed in Sec. VII and VIII.

One can see that, with minor reservations, the cases of linear and resonant circular polarization are equivalent, and

thus the proposed calculations cover all imaginable cases of interest. Namely, in the general case of an elliptically

polarized rf field, particles would primarily interact with the resonant circularly polarized harmonic, for which the

presented analysis remains fully applicable.

APPENDIX B: REFLECTION AND TRANSMISSION IN ABRUPT FIELD WITH STRONG

TRANSVERSE HEATING

Consider an abrupt-field configuration (84) with b1,2 given by Eq. (111) and smooth rf field profile ε ≡ ε1 = ε2

(Fig. 20). Using the expressions for φ0-averaged quantities

〈∆µ〉φ0 =
(1 + α)2

8α2
ε2Λ + ∆µb + O

(
ε2

)
, (B1)

〈Q〉φ0 = −∆µb + O
(
ε2

)
, (B2)

one can obtain the condition for particle transmission through the resonance. Assume µ0 = 0 for clarity. A particle

is reflected purely by the ponderomotive force before reaching the resonance region if

vz,0

v̂
<

1
2
√

α
, (B3)

where v̂2 = ε2
√

Λ. A weaker condition is imposed on vz,0 for reflection by the “boundary” itself: At location close to

z = 0 before colliding with the boundary, the particle longitudinal energy is given by

E|| = E||,0 − Φ1, Φ1 = ± v̂2

8α
. (B4)

The transmitted particle energy changes over the boundary according to [E||] = −[E⊥], where

[
E⊥

]
= ±1 + α

8α2
v̂2, (B5)
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as one can obtain straightforwardly from Eqs. (91). Since E|| > 0, for a transmitted particle one must have

(vz,0

v̂

)2

> ±2α + 1
4α2

. (B6)

Particles traveling from the strong-field side are always transmitted, as seen from Eq. (B6) with the minus sign.

Those, which travel backwards, are reflected if

vz,0

v̂
<

√
2α + 1
2α

. (B7)

Note also that the violation of inequality (B7) does not necessarily prevent a particle from reflection by the decelerating

ponderomotive force behind the resonance. To eliminate this possibility, it is necessary to have

vz,0

v̂
>

α + 1
2α

. (B8)
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LIST OF CAPTIONS

1. Schematic of an asymmetric ponderomotive barrier with an rf electric field having a maximum at z = 0, where

the local cyclotron frequency Ω = eB0/mc equals the rf field frequency ω. Ponderomotive potential Φ(z) is

singular and changes its sign over the cyclotron resonance. The average longitudinal Lorentz force is directed

the same way to both sides of the resonance and drags a charged particle towards weaker dc magnetic field B0.

2. Ponderomotive potential in a smooth field configuration (LB, LE � vz/ω): in the resonance region (shaded),

where the ponderomotive approximation does not hold, the rf electric field is approximately constant, and the

dc magnetic field can be approximated with a linear function of z (Ω/ω ≈ 1 + z/LB). The characteristic width

of the resonance region is z̄ =
√

LBvz/ω ; the characteristic height of the ponderomotive barrier is about Φ(z̄).

3. Schematic of the abrupt field configuration with reduced transverse heating: the rf electric field amplitude ε(z)

equals zero at the cyclotron resonance and satisfies Eq. (50) outside the resonance region. The dc magnetic field

and the rf field change at the scale ∆z small compared to the longitudinal particle gyroradius rg (rg = vz in

dimensionless units).

4. Normalized transverse energy E⊥/a2Λ of particles incident on a smooth rf barrier from the strong-field side

(Ω > ω) versus z for vz,0/v̂ = 0.5, 0.75, 1, 1.5, 2, 3, 4, 5: b(z) and ε(z) yield Eq. (124) with parameters given in

Table I. Larger energy gain corresponds to smaller |vz,0|.

5. Phase portrait for the longitudinal motion of particles incident on a smooth rf barrier from the strong-field side

(Ω > ω): normalized longitudinal velocity vz/v̂ versus z (same parameters than for Fig. 4). Larger acceleration

corresponds to smaller |vz,0|.

6. Normalized transverse energy gain E⊥/a2Λ of particles incident on a smooth rf barrier from the strong-field

side (Ω > ω) versus vz,0/v̂ (same parameters than for Fig. 4): numerical (solid) and asymptotical analytical

approximation (dashed) for vz,0/v̂ � 1.

7. Normalized transverse energy E⊥/a2Λ of particles incident on a smooth rf barrier from the weak-field side

(Ω < ω) versus z for vz,0/v̂ = 0.2, 0.5, 1, 2, 3, 4, 5 (same parameters than for Fig. 4).

8. Phase portrait for the longitudinal motion of particles incident on a smooth rf barrier from the weak-field side

(Ω < ω): normalized longitudinal velocity vz/v̂ versus z (same parameters than for Fig. 4).

9. Particle motion near a smooth cyclotron-resonant rf barrier. Axes: normalized transverse energy E⊥/a2Λ of

a particle, its longitudinal location z, and time τ . Separately shown is the projection of the 3D plot on the

plane (τ, E⊥) (same parameters than for Fig. 4): (a) vz,0/v̂ = 0.2 – adiabatic reflection by the rf field; (b)

vz,0/v̂ = 0.5 – slightly nonadiabatic reflection by the rf field; (c) vz,0/v̂ = 2 – adiabatic diamagnetic reflection

after nonadiabatic resonant heating.

10. Phase portrait of a cyclotron-resonant rf barrier produced by the fields given by Eq. (125) with parameters given

in Table I: normalized longitudinal velocity vz/v̂ versus z. Established potential is reversible for all z.
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11. Normalized transverse energy E⊥/a2Λ of particles incident on a smooth rf barrier with an odd ε(z) from the

weak-field (Ω < ω) side versus z (same parameters than for Fig. 10): vz,0/v̂ = 3 (for other values of vz,0/v̂, plots

are virtually congruent with the shown one, as motion is reversible).

12. Particle motion near a smooth cyclotron-resonant rf barrier with an odd profile ε(z). Axes: normalized transverse

energy E⊥/a2Λ of a particle, its longitudinal location z, and time τ . Separately shown is the projection of the

3D plot on the plane (τ, E⊥) (same parameters than for Fig. 10): (a,b) vz,0/v̂ = ±0.85 – adiabatic reflection by

the rf field of particles traveling from the weak- and the strong-field (Ω ≶ ω) sides.

13. Particle motion near a smooth cyclotron-resonant rf barrier with an odd profile ε(z). Axes: normalized transverse

energy E⊥/a2Λ of a particle, its longitudinal location z, and time τ . Separately shown is the projection of the

3D plot on the plane (τ, E⊥) (same parameters than for Fig. 10): (a,b) vz,0/v̂ = ±0.9 – adiabatic transmission

of particles traveling from the weak- and the strong-field (Ω ≶ ω) sides.

14. Phase portrait of a cyclotron-resonant rf barrier produced by the fields given by Eq. (126) with parameters

given in Table II: normalized longitudinal velocity vz/v̂ versus z (solid – vz,0 > 0, dashed – vz,0 < 0). Particles

traveling from the strong-field side (Ω > ω) are all transmitted. Those, which travel from the weak-field side

(Ω < ω), are reflected adiabatically without reaching the boundary if vz,0 < 1
2 v̂, are reflected from the boundary

– if 1
2 v̂ < vz,0 <

√
3

2 v̂, transmit through the whole barrier – if vz,0 > v̂.

15. Particle motion near a single-boundary abrupt cyclotron-resonant rf barrier. Axes: normalized transverse energy

E⊥/a2Λ of a particle, its longitudinal location z, and time τ . Separately shown is the projection of the 3D plot

on the plane (τ, E⊥) (same parameters than for Fig. 14): (a) vz,0/v̂ = 0.5 – adiabatic reflection by the rf field of

a particle traveling from the weak-field side (Ω < ω) without reaching the boundary; (b) vz,0/v̂ = 1 – particle

reflection by the decelerating ponderomotive force behind the barrier; (c) vz,0/v̂ = 1.5 – particle transmission.

16. Normalized transverse energy E⊥/a2Λ of particles incident on a single-boundary rf barrier (a) from the weak-

field side (Ω < ω) and (b) from the strong-field side (Ω > ω) versus z (same parameters than for Fig. 14): (a)

vz,0/v̂ = 1.1, 1.5, (b) vz,0/v̂ = 0.3, 0.5, 0.7, 1. In wide range of initial velocities, particles gain approximately

equal transverse energy E⊥ ≈ 1
2 a2Λ, regardless of the sign of vz,0.

17. Normalized longitudinal velocity vz/vz,0 of particles incident on a single-boundary heating-free rf barrier from

the strong-field side (Ω > ω) as a function of their initial rf phase τ0: analytical (solid) and numerical (dotted)

results; b(z) and ε(z) yield Eq. (127) with parameters given in Table II, v2
z,0 = 1

4 v̂2, the reflection coefficient is

R = 1
2 . Observed transverse heating is ∆µ . a2.

18. Phase portrait of a cyclotron-resonant rf barrier produced by the fields given by Eq. (127) (circular polarization)

with parameters given in Table II: normalized longitudinal velocity vz/v̂ versus z. Established potential is

reversible for all z.

19. Normalized transverse energy E⊥/a2Λ of particles incident on an abrupt rf barrier with an odd ε(z) from the
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weak-field side (Ω < ω) versus z (same parameters than for Fig. 18): vz,0/v̂ = 3 (for other values of vz,0/v̂, plots

are congruent with the shown one, as motion is reversible).

20. Schematic of the abrupt field configuration with strong transverse heating: the rf electric field amplitude ε(z)

changes little over the resonance region. The dc magnetic field changes at the scale ∆z small compared to the

longitudinal particle gyroradius rg (rg = vz in dimensionless units).
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